Equational Lifting Monads
نویسندگان
چکیده
We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of the former fully embeds in the partial category of the latter. Thus equational lifting monads precisely capture the (partial) equational properties of partial map classifiers. The representation theorem also provides a tool for transferring non-equational properties of partial map classifiers to equational lifting monads. It is proved using a direct axiomatization of the Kleisli categories of equational lifting monads as abstract Kleisli categories with extra structure. This axiomatization is of interest in its own right.
منابع مشابه
An equational notion of lifting monad
We introduce the notion of an equational lifting monad: a commutative strong monad satisfying one additional equation (valid for monads arising from partial map classifiers). We prove that any equational lifting monad has a representation by a partial map classifier such that the Kleisli category of the former fully embeds in the partial category of the latter. Thus equational lifting monads pr...
متن کاملPartiality and Container Monads
We investigate monads of partiality in Martin-Löf type theory, following Moggi’s general monad-based method for modelling effectful computations. These monads are often called lifting monads and appear in category theory with different but related definitions. In this paper, we unveil the relationship between containers and lifting monads. We show that the lifting monads usually employed in typ...
متن کاملCodensity Liftings of Monads
We introduce a method to lift monads on the base category of a fibration to its total category using codensity monads. This method, called codensity lifting, is applicable to various fibrations which were not supported by the categorical >>-lifting. After introducing the codensity lifting, we illustrate some examples of codensity liftings of monads along the fibrations from the category of preo...
متن کاملPredicate Logic for Functors and Monads
This paper starts from the elementary observation that what is usually called a predicate lifting in coalgebraic modal logic is in fact an endomap of indexed categories. This leads to a systematic review of basic results in predicate logic for functors and monads, involving induction and coinduction principles for functors and compositional modal operators for monads.
متن کاملThe Weak Theory of Monads
We construct a ‘weak’ version EMw(K ) of Lack & Street’s 2-category of monads in a 2-category K , by replacing their compatibility constraint of 1-cells with the units of monads by an additional condition on the 2-cells. A relation between monads in EMw(K ) and composite pre-monads in K is discussed. If K admits Eilenberg-Moore constructions for monads, we define two symmetrical notions of ‘wea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 29 شماره
صفحات -
تاریخ انتشار 1999